the product:

ALPHA® CVP-520 Solder Paste

product guide

A low melting point, lead-free, no clean solder paste designed for low temperature SMT reflow applications

Welcome to the ALPHA[®] CVP-520 Product Guide

CONTENTS	Page #	
1. Introduction	3	
2. Performance Summary	/ 4	
3. Value Creation	5 - 7	
4. Print Performance	8 - 13	
5. Reflow Performance	14 - 29	
6. Reliability	30 - 39	
7. Summary	40 - 44	

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

с Q

Introduction

Introducing ALPHA[®] CVP-520, a low melting point, lead-free no clean solder paste from Cookson Electronics.

Low temperature (<170° C peak reflow temperature) lead free solder paste has 3 significant process advantages:

- Elimination of a Wave or Selective Soldering process step while preventing 1. damage to temperature sensitive components and connectors
- Significant reduction in reflow process cycle time 2.

3. **Reduced Energy Consumption**

Cookson's world class phase gate product development process began with a rigorous set of product specifications based on the voice of our customers. Exhaustive lab and field testing have resulted in a robust, high yield product that can solve one or more of the challenges associated with lead free, mixed technology (Surface Mount and Through Hole) soldering.

You can count on the complete support of Cookson's global team of technical experts, whenever and however you need us. It's the kind of support you would cookson Electronics expect from a company that's remained dedicated to serving the needs of the Global circuit assembly market for over 50 years.

Performance Summary

Performance Summary

Process Benefit	CVP-520 Property	Performance Capability
	Fine Feature Print Definition	Excellent print definition and consistant volumetric performance to 0.3mm (12 mil) mask defined circles and 0.4mm (16 mil) pitch rectangular QFP pads using 125µ (5 mil) stencil. Minimum area ratio 0.60
	Tack Life	>8 hours
Print Process Window	Temperature Window	Capable of printing in temperatures from 20° C to $\ge 29^{\circ}$ C (68°F to $\ge 86^{\circ}$ F) at 30 to 65% relative humidity
	Print Consistency	Repeatable volume deposition and low volume variability (CpK > 2.0) on 0.5mm (20 mil) circles.
	Print Speed Range	Squeegee Speed: 40 mm/second to 100mm/second (1.5 inches/second to 4 inches/second)
	Peak Reflow Temperature	Between 155° and 180°C, Depending on thermal mass of assembly
Reflow Yield	Resistance to Voids	Exceeds requirements of IPC 7095 Class III using soak reflow profile. Class II with straight ramp profiles.
	Halogen Content	Zero Halogen, no halogen intentionally added
	Flux Residue Cosmetics	Clear, colorless residue.
	SIR	Meets/Exceeds - JIS, IPC and Bellcore Requirements
Electrical Reliability	Electromigration Resistance	Meets/Exceeds - JIS and Bellcore Requirements
	J-STD-004 Classification	ROL0
	Halide Content	Halide Free

Value Creation

Value in Use Model

- If you are using 1 or 2 surface mount reflow steps, plus a wave soldering step, could CVP-520 allow you to eliminate the wave soldering process?
- If so, how much could you save with:
- Lower Energy Consumption?
- Eliminate Cost of Wave Soldering?
- Reduced Working Capital?

CVP-520 value in use

\$29,678

Instructions: Fill in each vellow box with

your best estimated	value						value Creati
	Curre	nt Pr	ocess Cost of	Owners	nip C	alculation	
Reflow Si	de A		Reflow	Side B		Wave Solderering	-
Oven Energy Consumption Motors, PC Monitor etc. Total Energy Consumption/Hour	20 5 25	KW/Hr KW/Hr KW/Hr	Oven Energy Consumption Motors, PC Monitor etc. Energy Consumption/Hour	20 5 25	KW/Hr KW/Hr KW/Hr	Flux Preheat Energy Requirement Solder Bath Energy Requirement Motors, PC Monitor etc. Total Energy Consumption/Hour	30 36 5 71
Solder Paste Solder Paste Price	5 \$65.00	kg per Kg	Solder Paste Solder Paste Price	5 \$65.00	kg per Kg	Flux Used/Day (liters) Flux Price/liter	14 \$4.00
						Bar Solder Consumption(Kg/day) Bar Solder Cost (\$/Kg)	7 \$37.47
Operating Hours/Day Working days/month Energy Cost/KWH	16 22 \$0.15	Hours Days per KWH	Operating Hours/Day Working days/month Energy Cost/KWH	16 22 \$0.15	Hours Days per KWH	Operating Hours/Day Working days/month Energy Cost/KWH	16 22 \$0.15
Cost of Energy/month Cost of Paste/month	\$1,320 \$7,150		Cost of Energy/month Cost of Paste/month	\$1,320 \$7,150		Cost of Energy/month Cost of Flux/month Cost of Bar Solder/month	\$5,736 \$1,232 \$5,770
Total Cost / Month / Machine	\$8,470		Total Cost / Month / Machine	\$8,470		Total Cost / Month / Machine	\$12,738
		-			-	Pallet Cost / Machine Number of Selective Soldering Pallets in Cost/selective soldering pallet	25 \$100 \$2,500
						Working Capital Reduction SOLDER POT CAPACITY (Kg)	817 \$30,60 <u>0</u>
Variable Cost /							

Pallet Cost / Line

Value Creation

Cookson Electronics

Month / Line

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

\$2,500

Metal Inventory Value

\$30,600

CVP-520 value in use

Instructions: Fill in each yellow l best estimated valu	oox with your e	ith your		Value Creat			
Compari	son of Pro	opo	sed Cost of Owne	rship			
Reflow Sid	le A		Reflow Sid	de B			
Oven Energy Consumption Motors, PC Monitor etc. Total Energy Consumption/Hou	20 KW 5 KW 25 KW	//Hr //Hr //Hr	Oven Energy Consumption Motors, PC Monitor etc. Total Energy Consumption/Hour	15 5 20	KW/Hr KW/Hr KW/Hr		
Solder Paste Used/line/day Solder Paste Price	<mark>5</mark> kg \$65.00 per	Kg	Solder Paste Used/line/day Solder Paste Price	<mark>5</mark> \$75.00	kg per Kg		
Dperating Hours/Day Working days/month Energy Cost/KWH	16 Hou 22 Day \$0.15 per	urs /s KWH	Operating Hours/Day Working days/month Energy Cost/KWH	16 22 \$0.15	Hours Days per KWH		
Cost of Energy/month Cost of Paste/month	\$1,320 \$7,150		Cost of Energy/month Cost of Paste/month	\$1,056 \$8,250			
Total Cost / Month / Machine	\$8,470		Total Cost / Month / Machine	\$9,306		Total Variable (Month / Line	Cost / \$17,776
			Proposed Process	5			
Proposed Variable Cost / Month / Line	\$17,776		Pallet Cost / Machine	\$0		Metal Invento Value	o ry \$0
			Existing Process				
Current Variable Cost / Month / Line	\$29,678		Pallet Cost / Machine	\$2,500		Metal Invento Value	o ry \$30,600
			Cost Reduction / Li	ne			
Variable Savings / Month / Line	\$11,902 40	0.1%	Pallet Cost / Machine	\$2,500		Reduced Working Cap	oital \$30,600
tronics							

Fine Feature Print Definition

Delivers High Fine Feature Print Yields

Excellent print definition and consistent volumetric performance to 0.4mm (16mil) squares and 0.30mm (12 mil) diameter mask defined circles

*10 cm/sec (4in/sec), 0.26kg/cm (1.5 lbs/in) squeegee pressure, 0.125mm (5 mil) stencil

L D D D D D

Print Performance

Print Performance

Paste Volume, Repeatability- Room Temperature (25° C)

Repeatable volumes after 2 hour pause

- Continuous monitoring of paste volume over time demonstrates ALPHA CVP-520's consistent printability
- High Volume Deposits

Cookson Electronics · High Level of Volume Repeatability

Stencil Cleaning Frequency Test

Paste: Polar Bear-PNC0806N

Solder Paste - Wipe Frequency

Over 10 Prints/Stencil Cleaning

Based on 1:1 (100%)
Aperature Opening on 20 Mil
QFP (63 mil x 12 mil deposit)

•Lower Stencil Cleaning Frequency = Faster Print Cycle Time

	Number of Bridges Board Set 1				
		QFP Pitch			
Prints	16 (100%)	16 (90%)	20 (100%)	20 (90%)	
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	3	0	0	0	
5	1	0	0	0	
6	5	0	0	0	
7	1	0	0	0	
8	>10	0	0	0	
9	>10	0	0	0	
10	>10	8	0	0	
11	>10	6	0	0	
12	3	0	0	0	
13	>10	>10	3	0	
14	>10	5	0	0	
15	>10	0	0	0	
16	>10	>10	>10	0	
17	>10	2	2	0	
18	4	0	0	0	
19	>10	9	5	0	
20	>10	>10	>10	0	

No Defects due to Inadequate Stencil Cleaning

Print Performance

L D D D

Stencil Life

Maintains consistent print volume deposition over 8 hours

Cookson Electronics

20 mil (0.50mm) Diameter Circles- Typical Feature Size for 0.65mm pitch BGA Package

Print Performance

Print Performance

Viscosity Stability

Storage days	0	1	2	6	10	15
3rpm	410	404	400	392	402	411
4rpm	330	324	327	328	331	344
5rpm	292	288	289	287	287	301
10rpm	198	197	200	199	199	202
20rpm	144	143	145	144	144	147
30rpm	122	121	124	121	121	122
10rpm	194	192	196	191	191	195

6 Month Shelf Life when stored at (0°C - 10°C)

2 Weeks Room Temperature Stability (25°C; 77°F)

Malcolm Viscometer, Viscosity in mPa-sec

Print Performance

Stable Rheology

Consistent Shear Strain relationship after 8 hours of continuous printing

Excellent indicator of stable printing performance

Paste In Hole Performance

0.35" Overprint 0.20" Overprint .25" Overprint .30" Overprint

Paste is drawn into plated through hole with up to .25in (6.4mm) Overprint

- Enables reflow soldering of through hole components
- Complete hole fill possible with correct through hole/lead design
- More challenging volume requirements managed with use of additional solder volume from preforms

Cookson Electronics

Reflow Performance

-

Reflow Performance

Paste In Hole Performance

Exactalloy[™] Preforms Increases Solder Volume to enable complete hole fill + fillet. Often Required with rectangular pin in round through hole

Application Note

Reflow Performance

Top: 100% of preform placed in solder paste deposit

Middle: 50% of preform placed into solder paste deposit

Bottom: 20% of preform placed in solder paste deposit

Cookson Electronics

Preforms are drawn to center of solder paste deposit during ramp/soak portion of reflow process

Result: Additional solder volume successfully added, even if only 20% of the preform is placed in the solder paste deposit

Reflow Performance

Reflow Process Guidelines

General Reflow Profile Guidelines					
Parameter	Guideline				
Atmosphere	Air or N2				
SnBiAg (42/57.6/0.4) alloy	138°C (near eutectic)				
Setting Zone	Optimal Dwell Period				
40°C to 138°C	2:10 - 4:00 minutes				
125°C to 138°C	0:30 - 1:30 minutes				
100°C to 138°C	1:15 - 2:00 minutes				
TAL (138°C)	0:30 - 1:30 minutes				
Peak temperature	155 °C - 180°C				
Joint cool down rate from 170°C	3°C - 8°C/sec				

Example Reflow Profile 1:

CVP-520 42 Sn/57.6 Bi/0.4 Ag

2°C/Sec Ramp, 120°-130° 160 Sec Soak, 160° Peak, 45 seconds TAL (138°C)

Reflow Performance

Example Reflow Profile 1:

CVP-520 42 Sn/57.6 Bi/0.4 Ag

Reflow Performance

Cookson Electronics

2°C/Sec Ramp, 120°-130° 160 Sec Soak, 160° Peak, 45 seconds TAL (138°C) Cross Section Analysis

a 1 b h a

Example Reflow Profile 1:

CVP-520 42 Sn/57.6 Bi/0.4 Ag

Component A Cross Section Analysis

Reflow Performance

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Example Reflow Profile 1:

CVP-520 42 Sn/57.6 Bi/0.4 Ag

Reflow Performance

Component B Cross Section Analysis

Example Reflow Profile 1:

CVP-520 42 Sn/57.6 Bi/0.4 Ag

Reflow Performance

Component C Cross Section Analysis

Π

Reflow Performance

Example Reflow Profile 2:

CVP-520 42 Sn/57.6 Bi/0.4 Ag

Reflow Yield: Application Note

Definition of Voiding Performance

Location of Void	Class I	Class II	Class III
Void in Solder (Solder Sphere)	60% of diameter = 36% of Area	42% of diameter = 20.25% of Area	30% of diameter = 9% of Area
Void at interface of Solder (Sphere) and Substrate	50% of diameter = 25% of Area	25% of diameter = 12.25% of Area	20% of diameter = 4% of Area

IPC Criteria for Voids in BGAs, IPC 7095 7.4.1.6

The IPC criteria provide three classes of acceptance for both the solder sphere and the sphere-pad interface.

Where multiple voids exist, the dimensions will be added to calculate total voiding in the joint.

Cookson Electronics

Reflow Performance

Voiding Performance

Reflow Performance

Excellent, low voiding performance

Meets IPC 7095 Class III Requirements with Soak Reflow Profile

Cookson Electronics

a 1 b h d a

Cold & Hot slump performance

No bridging >0.3mm after 3 minute soak at 100°C using JIS-Z-3284 Appendix 8 test pattern

Meets Hot & Cold Slump Requirements per IPC J-STD-005

	Cold Slump		Hot Slump Oven 100°C	
	25°C / 50% / 75% RH		10 mi	nutes
Ded Size	0.63 x	0.33 x	0.63 x	0.33 x
Fau Size	2.03mm	2.03mm	2.03mm	2.03mm
IPC max gap	0.48	0.2	0.56	0.25
bridge allowed	Pass	Pass	Pass	Pass

Cookson Electronics

Reflow Performance

Resistance to Solder Balls

Reflow Performance

Alloy	Sn/Bi/0.4Ag
Metal loading	90wt%
Solder ball test 150um , 6.5mm stencil Hot plate 160°C Initial	
Solder ball test 150um , 6.5mm stencil Hot plate 160°C 24hr storage at RT	

r q d l n

Flux Residue Cosmetics

Post-Reflow Cosmetics

- Clear, colorless flux residue
- No evidence of bubbles in flux
- No flux burning on copper substrate

Performance Indicator

• Products that do not deliver clear residues can lead to inconsistent flux cosmetics, increasing the difficulty of visual inspection.

Shear Force After Thermal Cycling

60

40 20

40

Test Conditions

Thermal cycle -45 (30min) ⇔ +125 (30min) Espce TSA-70S

120

205

Time(sec.)

240

230

160

a L D L D L D L

Reliability

编制

Shear Force After Thermal Cycling

Reliability

• Thermal cycle -45 (30min) ⇔ +125 (30min) Espce TSA-70S

Shear Force After Thermal Cycling

Reliability

Thermal cycle -45 (30min) ⇔ +125 (30min) Espce TSA-70S

> ul d h h

Reliability

Application Note:

When using a Bismuth/Tin/Silver alloy solder paste, <u>all</u> components and soldered surfaces should be lead free. Pb bearing alloy components will form a very low melting point Tin/Bismuth/Lead Ternary alloy that may reduce assembly's resistance to failure at operating temperatures over 100°C.

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

CVP-520 solder paste

Summary Table

Chemical		
Cu Correction	IPC J-STD 004	Pass
Cu Corrosion	JIS Z 3197 - 1999 8.4.1	Pass
Cu Mirror	IPC J-STD 004	Pass
Ag Chromate	IPC J-STD 004	Pass
	EN14582,	
Zero Halogen	by oxygen bomb combustion,	
	Non detectable (ND) at < 50 ppm	Pass
Paste is ROL0 p	er IPC	

Electrical			
SIR (IPC)	7 day 85°C/85% RH (Ω)	3.6E+11	> 10 ⁸ = Pass
SIR (Bellcore)	96 hours @ 35°C/85% RH (Ω)	1.1E+12	> 10 ¹¹ = Pass
Electromigration (Bellcore)	500 hours, 65° C, 85% RH	Initial 8.4E+11 Final 1.4E+12	Pass Final > Initial/10
Electromigration (JIS)	1000 hours, 85°C, 85% RH 48V (Ω)	1.0E+10	Pass > 1.0 X 10 ⁸ ohm

Reliability

Electrical Reliability Data

Passes IPC SIR Test

Test	#:0824-2i	Date:	9/9/2008	T/H/B	85C/85%RH/-48V		
Tested	by:	K. Tellefsei	n	P/F	limit:		
Reported	by:	K. Tellefsen		1.00E+08	ohms		
· ·		Tellefsen					
Material							
Tested	Initial	SIR(ohms)	R(ohms) SIR		Final	COMMEN	TS
	ambient	(1 Day)	(4 Days)	(7 Days)			
CVP-520	SnBiAg						
Reflowed	100C Soak	soak	175C				
	9.00E+10	7.40E+09	2.90E+09	2.70E+09	3.60E+11	Passed I	Electrical
	9.80E+09	2.30E+09	1.10E+09	2.20E+08	2.80E+10	and Visual	
Uncleaned	1.10E+10	2.00E+09	4.90E+08	5.70E+08	6.00E+10		
	8.40E+10	5.50E+09	2.50E+09	2.40E+09	3.40E+11		
	6.00E+09	7.50E+08	1.90E+08	1.50E+08	9.00E+10		
	7.40E+10	6.30E+09	3.40E+09	3.00E+09	3.30E+11		
	1.20E+11	7.10E+09	3.00E+09	2.80E+09	2.20E+11		
	1.10E+10	9.30E+08	5.60E+08	1.40E+08	1.30E+10		
	>1.0E12	3.20E+09	2.10E+09	2.40E+09	>1.0E12		
	>1.0E12	3.50E+09	1.90E+09	2.70E+09	>1.0E12		
	5.70E+11	1.30E+10	6.80E+09	4.50E+09	5.80E+11		
	>1.0E12	2.00E+10	7.60E+09	5.90E+09	3.20E+11		
Arithmetic							
Mean	3.30E+11	6.00E+09	2.70E+09	2.30E+09	3.60E+11		
Control							
Boards	>1.0E12	6.40E+10	2.30E+10	2.60E+10	>1.0E12		
	>1.0E12	9.40E+10	3.20E+10	3.50E+10	>1.0E12		
	>1.0E12	1.50E+11	6.40E+10	7.10E+10	>1.0E12		
	>1.0E12	4.20E+10	2.30E+10	2.80E+10	>1.0E12		
	>1.0E12	2.60E+10	1.10E+10	1.90E+10	>1.0E12		
	>1.0E12	2.70E+10	1.10E+10	1.90E+10	>1.0E12		
	6.10E+11	4.60E+10	2.20E+10	2.30E+10	4.40E+11		
	7.50E+11	5.00E+10	2.30E+10	2.40E+10	>1.0E12		
	3.00E+10	8.10E+10	3.80E+10	4.20E+10	>1.0E12		
	>1.0E12	7.10E+10	3.10E+10	3.30E+10	>1.0E12		
	>1.0E12	2.20E+10	1.70E+10	2.30E+10	>1.0E12		
	>1.0E12	6.40E+10	3.30E+10	3.50E+10	>1.0E12		
Arithmetic							
Mean	8.70E+11	6.10E+10	2.70E+10	3.20E+10	9.50E+11		

TEST

SIR

PFR

J-STD-004

Reliability

Electrical Reliability Data

Passes Bellcore SIR Test

Test #: 0824-2b Date9/9/2008 T/H/B:35/85/-48 Tested by: K. Tellefsen Reported by:K. TellP/F limit:1E11 Ohms MATERIAL TESTED/ SIR SIR COMMENTS CONDITION (1 day) (4 days) CVP-520 SnBiAg 1.1E+12 1.1E+12 Visually OK Reflowed 1.1E+12 1.1E+12 Uncleaned 13E+12 20E+12 1.4E+13 9.9E+11 7.1E+12 2.5E+12 2.5E+12 9.9E+11 8 3E+12 1 1E+12 17E+12 50E+12 5.0F+12 1.4F+12 8.3E+12 5.0E+12 8.3E+12 5.1E+10 2.5E+11 3.6E+11 Geometric mean: 3.0E+12 1.1E+12 Control boards 5.0E+13 5.0E+12 7.6E+12 1.1E+13 7.6E+12 1.1E+13 1.1E+13 1.4E+13 2.6F+12 3.8F+12 7.1F+12 9.9F+13 9.9E+12 2.0E+13 8.3E+12 2.0E+13 1.1E+12 9.9E+13 7.1E+12 5.0E+13 7.1E+12 9.9E+13 9.0E+12 3.3E+13

Geometric mean: 7.3E+12 2.3E+13

Reliability

1

Cookson Electronics

Electrical Reliability Data

Passes Bellcore EM Test

Test#: 0824-2b	Date9/9/2008 T/H/B:35/85/-48								
Tested by: K.	Tellefsen	Reported	by:K.						
TellP/F limit:1E11 Ohms									
MATERIAL TESTE	D/ SIR	SIR	COMMENTS						
CONDITION	(1 day)	(4 days)							
OVD 500 0 DiA									
CVP-520 ShBiAg	1.1E+12	1.1E+12	VISUAILY OK						
Reflowed	1.1E+12	1.1E+12							
Uncleaned	1.3E+12	2.0E+12							
	1.4E+13	9.9E+11							
	7.1E+12	2.5E+12							
	2.5E+12	9.9E+11							
	8.3E+12	1.1E+12							
	1.7E+12	5.0E+12							
	5.0E+12	1.4E+12							
	8.3E+12	5.0E+12							
	8.3E+12	5.1E+10							
	2.5E+11	3.6E+11							
Geometric mean:	3.0E+12	1.1E+12							
Control boards	5.0E+13	5.0E+12							
	7.6E+12	1.1E+13							
	7.6E+12	1.1E+13							
	1.1E+13	1.4E+13							
	2.6E+12	3.8E+12							
	7.1E+12	9.9E+13							
	9.9E+12	2.0E+13							
	8.3E+12	2.0E+13							
	1.1E+12	9.9E+13							
	7.1E+12	5.0E+13							
	7.1E+12	9.9E+13							
	9.0E+12	3.3E+13							
Geometric mean:	 7.3E+12	2.3E+13							

Cookson Electronics

Reliability

T

Electrical Reliability Data

Reliability

Passes JIS ECM Test

Cookson Electronics

Electrical Reliability Data

Passes JIS ECM Test

Equipment : Espec Ion migration tester Bias Voltage : 48VDC Conditions : 85°C/85%RH

Reliability

No Dendritic Growth after 1,000 hours at 85°C/85% RH.

39

Summary

Enabling Technology for Low Peak Temperature Reflow Applications

Potential to Eliminate Wave Soldering in Multiple Reflow Assemblies

Proven Mechanical and Electrical Reliability

Reduced Energy Consumption vs. Typical SAC Alloys

Cookson Electronics Global Manufacturing and World Class Technical Support

Cookson Electronics

Summarv Leading Products: No Clean, SnPb •ALPHA OM-5100 •ALPHA OM-5300 No Clean. Lead-free • ALPHA OM-338 T •ALPHA OM-338 PT • ALPHA OM-340 •AI PHA OM-350 NO-CLEAN •ALPHA CVP-520 ALPHA OM-Se •ALPHA CVP-360 WATER SO Water Soluble, SnPb AL PHA V NO-CLEAN • ALPHA WS-809 ALPHA OM-Series WATER-SOLUBLE NO-CLEAN Water Soluble, Lead-free LPHA Lead-Free ALPHA OM-Serie • ALPHA WS-819 ALPHA WS-Series WATER-SOLUBLE • ALPHA WS-820 ALPHA Solder Paste ALPHA WS-Series ALPHA Solder Paste

Global Manufacturing Sites

AMERICAS

California, USA Florida, USA Illinois, USA New York, USA Pennsylvania, USA Mexico City, Mexico Monterrey, Mexico Manaus, Brazil Sao Paulo, Brazil

Cookson Electronics

EUROPE

Woking, England Turnhout, Belgium Cholet, France Budapest, Hungary Hatar, Hungary Naarden, Netherlands East Kilbride, Scotland

ASIA-PACIFIC

Hong Kong, China Guangxi, China Shenzhen, China Shanghai, China Chennai, India Hiratsuka, Japan Sihung City, Korea Singapore Taoyuan, Taiwan

Global Sales Support

AMERICAS

California, USA Georgia, USA Illinois, USA New Jersey, USA Pennsylvania, USA Ontario, Canada Guadalajara, Mexico Buenos Aires, Argentina Sao Paulo, Brazil

Cookson Electronics

EUROPE

Woking, England Turnhout, Belgium Cholet, France Langenfeld, Germany Hatar, Hungary Dublin, Ireland Milano, Italy Naarden, Netherlands East Kilbride, Scotland

ASIA-PACIFIC

Hong Kong, China Shenzhen, China Beijing, China Chengdu, China Guangxi, China Nanjing, China Shanghai, China Suzhou, China Tianjin, China Xiamen, China Bangalore, India Chennai, India Hiratsuka, Japan Sihung City, Korea Penang, Malaysia Muntinlupa, Philippines Singapore Taoyuan, Taiwan Bangkok, Thailand Thomastown, Australia Auckland, New Zealand Vietnam

Global Customer Technical Support

AMERICAS

California, USA New Jersey, USA Georgia, USA Guadalajara, Mexico Monterrey, Mexico Buenos Aires, Argentina Sao Paulo, Brazil Manaus, Brazil

EUROPE

Woking, England Turnhout, Belgium Cholet, France Langenfeld, Germany

ASIA-PACIFIC

Hong Kong, China Shenzhen, China Beijing, China Shanghai, China Suzhou, China Tianjin, China Bangalore, India Chennai, India Hiratsuka, Japan Sihung City, Korea Penang, Malaysia Singapore Taoyuan, Taiwan

Cookson Electronics