the product:

A lead-free wave solder alloy that delivers high yield, fast throughput and economy.

Cookson Electronics shared intell

Vaculoy SACX0307

product guide

Welcome to the Vaculoy SACX0307 Interactive Product Guide

Simply click on the navigation buttons to quickly locate specific product information.

There are links to other documents and to Cookson Electronics' website, where you can obtain additional information. To use this feature, you must launch your internet browser.

 Introduction
BACK TO MAIN MENU

Introduction

First we considered what you're up against. You have to remain price-competitive while meeting new lead-free regulations. You have chosen to use the wave solder process for your PCB assembly because it offers you high yields and fast throughput, and is the most economical process for your PCB design. You will need this in your lead-free process. To make that happen, you need a wave solder alloy that balances value and performance.

Cookson Electronics Assembly Materials has recognized these requirements and has developed **ALPHA Vaculoy SACX0307**, the new Lead-Free wave solder alloy and new compatible cored solder wire that will meet these needs.

During development of this product, the leading competitive product and Industry Standard Vaculoy SAC305 were benchmarked. In some applications, Industry Standard Vaculoy SAC305 outperforms ALPHA Vaculoy SACX0307. However, Lead-Free ALPHA Vaculoy SACX0307 outperforms all Sn/Cu-based alloys in more demanding applications. ALPHA SACX0307 is protected by a patent: US4929423.

ALPHA Vaculoy SACX0307 delivers:

High Yields Lowest Total Cost of Ownership Fast Wetting Low Dross Generation High Joint Mechanical Reliability Low Process Maintenance

Process

Performance Summary

SACX0307

Performance Summary
 Introducing Vaculoy SACX0307 Performance Data
 BACK TO MAIN MENU

Yield	Comparable yield to Industry Standard Vaculoy SAC305 and much superior to leading competitor's Sn/Cu-based alloy	Lower rework and warranty costs
Wetting speed	Wetting speed of 0.75 sec compared to 0.65 sec for Industry Standard Vaculoy SAC305 and 1.00 sec for leading competitor's Sn/Cu-based product	High yield and throughput rates achievable
Contact time, pot temperature and conveyor speed	Contact time: 2.3 - 3.5 sec; pot temperature: 255° - 265° Celsius (491° - 509° F); conveyor speed: 1.0 - 1.5 m/min (3.3 - 5 ft/min)	Wide wave solder process window
Dross generation	Low levels of dross generation	Lower solder consumption
Copper dissolution rate	Comparable to higher cost, Industry Standard SAC305; process monitoring and equilibrium point for copper will be equivalent	Process monitoring costs are equivalent
Surface mount shear strength	Surface mount components shear strength comparable to higher cost, Industry Standard Vaculoy SAC305	Equivalent reliability at lower cost
Through hole pull strength	Equivalent to Industry Standard Vaculoy SAC305 for pull strength on through hole components	Equivalent reliability at lower cost
Thermal cycling	Equivalent to Industry Standard Vaculoy SAC305 and 63/37 over 400 cycles (-40° to +125°C), tests ongoing	Indication of acceptable product life
	Wetting speed Contact time, pot temperature and conveyor speed Dross generation Copper dissolution rate Surface mount shear strength Chrough hole pull	SAC305 and much superior to leading competitor's Sn/Cu-based alloyWetting speedWetting speed of 0.75 sec compared to 0.65 sec for Industry Standard Vaculoy SAC305 and 1.00 sec for leading competitor's Sn/Cu-based productContact time, pot temperature and conveyor speedContact time: 2.3 - 3.5 sec; pot temperature: 255° - 265° Celsius (491° - 509° F); conveyor speed: 1.0 - 1.5 m/min (3.3 - 5 ft/min)Dross generationLow levels of dross generationCopper dissolution rateComparable to higher cost, Industry Standard SAC305; process monitoring and equilibrium point for copper will be equivalentSurface mount shear strengthSurface mount components shear strength comparable to higher cost, Industry Standard Vaculoy SAC305Through hole pull strengthEquivalent to Industry Standard Vaculoy SAC305 for pull strength on through hole componentsThermal cyclingEquivalent to Industry Standard Vaculoy SAC305 and 63/37 over 400 cycles (-40° to

Δ

Customer Benefits

Comparison

Performance Summary
 Introducing Vaculoy SACX0307Performance Data
 BACK TO MAIN MENU
)

ALPHA Vaculoy SACX0307									
	Units Baseline Vaculoy Competitor SAC305 SACX0307 A								
	Defect Rate		%	-	+5%	+60%			
ocess tribute	Wetting Speed	Time F Max	Sec mN/mm	0.60 0.26	0.75 0.21	1.00 0.10			
	Copper Erosion (3 sec contact)		Micron/sec*	11.0	10.7	11.7			
	Drossing Rate		Index	100**	39	43			
	Mechanical Reliability		Rank		1	3			
	Relative Cost		Index	1	0.65-0.75	0.65-0.75			

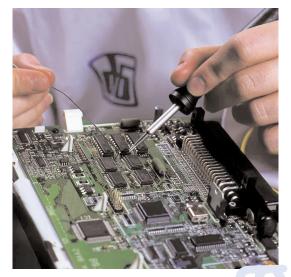
* 1 micron/sec = 25 mils/sec

** Generic alloy - No Vaculoy conditioning or dross-reducing agent

Delivers High Performance and Value Versus Other Wave Solder Alloys

- Demonstrates superior performance to other low-cost solutions for Lead-Free Wave Soldering.
- Offers economy and high yields.

Cookson Electronics


Competitor A : Leading competitor's Sn/Cu-based alloy

(

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Example: Total Cost of Ownership

Low complexity assembly, 75 components and 425 solder joints	Units	ALPHA Vaculoy SACX0307	Competitor A
Assembly yield	%	96.3%	94.4%
DPMO *	ppm	75	117
No. solder joints per board	-	425	425
Mass of solder per board	grams	18	18
No. of boards per year	-	1,000,000	1,000,000
Cost per board	\$US	\$20	\$20
Number of defects per year	-	31875	49725
Cost to rework defect **	\$US	\$1.025	\$1.025
Total rework cost	\$US	\$32,672	\$50,968
Total solder used	kg	18000	18000
Cost savings	\$US	\$18,296	
Savings per kg of solder	\$US/kg	\$1.02	

- * DPMO: Defects per million opportunities. Competitor A's assumed to be 55% greater than ALPHA SACX0307 based on benchmark studies. Baseline of 75 assumed for ALPHA SACX0307
- ** Based on actual customer data, includes ICT costs calculations available on request.

Lower Cost of Ownership than Competitor A

- Higher yields deliver cost savings.
- Significant savings per kg of solder consumed.

Cost of Ownership

Ownership

• Example: Total Cost of

Product Testing Design

Run	Alloy	Flux	Board Finish
Run 1	Sn99.3/CuO.7	ALPHA EF-4102	Cu OSP
Run 2	Sn99.3/CuO.7	ALPHA EF-4102	Im Ag
Run 3	Sn99.3/CuO.7	ALPHA NR-330	Cu OSP
Run 4	Sn99.3/CuO.7	ALPHA NR-330	lm Ag
Run 5	Sn99.3/CuO.7	ALPHA SMX018	Cu OSP
Run 6	Sn99.3/CuO.7	ALPHA SMX018	lm Ag
Run 7	Competitor A	ALPHA SMX018	Cu OSP
Run 8	Competitor A	ALPHA SMX018	lm Ag
Run 9	Competitor A	ALPHA EF-4102	Cu OSP
Run 10	Competitor A	ALPHA EF-4102	lm Ag
Run 11	Competitor A	ALPHA NR-330	Cu OSP
Run 12	Competitor A	ALPHA NR-330	lm Ag
Run 13	ALPHA Vaculoy SACX0307	ALPHA NR-330	Cu OSP
Run 14	ALPHA Vaculoy SACX0307	ALPHA NR-330	lm Ag
Run 15	ALPHA Vaculoy SACX0307	ALPHA EF-4102	Cu OSP
Run 16	ALPHA Vaculoy SACX0307	ALPHA EF-4102	lm Ag
Run 17	ALPHA Vaculoy SACX0307	ALPHA SMX018	Cu OSP
Run 18	ALPHA Vaculoy SACX0307	ALPHA SMX018	lm Ag
Run 19	SAC305	ALPHA EF-4102	Cu OSP
Run 20	SAC305	ALPHA EF-4102	Im Ag

The experiment was designed to be a run of 18 (3 alloys x 3 fluxes x 2 board finishes). The SAC305 alloy was added for one flux and two board finishes resulting in a run of 20 experiments. Five test boards were used for each run.

Yield

- Product Testing Design
- Test Results
- Alloy Benchmarking

BACK TO MAIN MENU

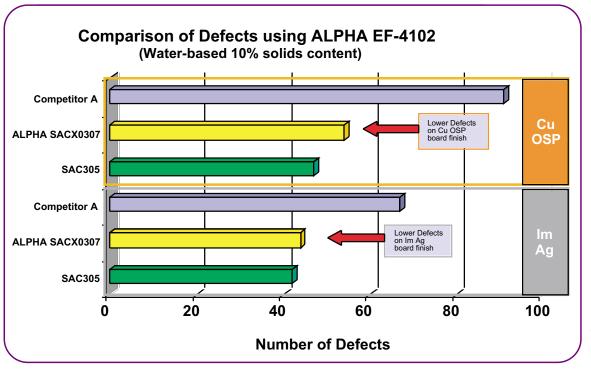
The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Test Results by Flux Technology

Vaculoy SACX0307 Versus Sn/Cu-based Alloys Sn99.3/Cu0.7 Vaculov SACX0307 **Competitor A** 250 Im Ag her Aa Ag 200 Defects per Board 50 Competitor A: Leading competitor's 0 Sn/Cu-based 6 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 7 alloy

Fewer Defects Across All Flux Technologies

• Delivers better drainage resulting in significantly fewer defects.



The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Yield

- Product Testing Design
- Test Results
- Yield Alloy Benchmarking

Yield Alloy Benchmarking

Competitor A: Leading competitor's Sn/Cu-based alloy

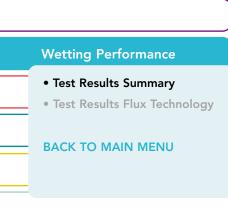
Comparable Yield to Higher-Cost Lead-Free Alloys

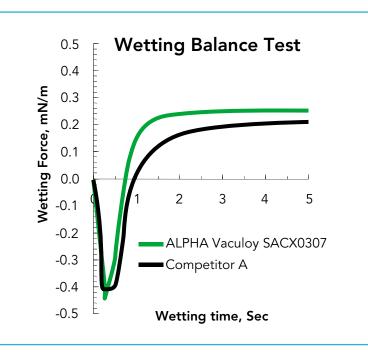
• Defect rates were comparable to Industry Standard SAC305.

Yield

• Test Results

Product Testing Design


· Yield Alloy Benchmarking


BACK TO MAIN MENU

The infort the accu

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Test Results Summary

The wetting balance or Meniscograph is used to determine the wetting performance of a given solder alloy. The variables of temperature, flux and test coupon are kept constant.

Faster wetting speed and higher wetting force indicate that the solder alloy has a <u>greater ability</u> to wet the solderable part.

For example, the ALPHA SACX0307 data line crosses the force axis at around 0.75 sec after start of test. This is superior performance to Competitor A, as that data line crosses the axis at 1.00 sec.

Competitor A: Leading competitor's Sn/Cu-based alloy

Faster Wetting Speed Gives Better Soldering Yields

• Wetting speed results shows that ALPHA Vaculoy SACX0307 has good wetting speed (0.6 - 0.9 sec), even on fluxes with lower solids content.

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

W	etti	ing	Pe	rfo	rma	ance

• Test Results Summary

• Test Results Flux Technology

BACK TO MAIN MENU

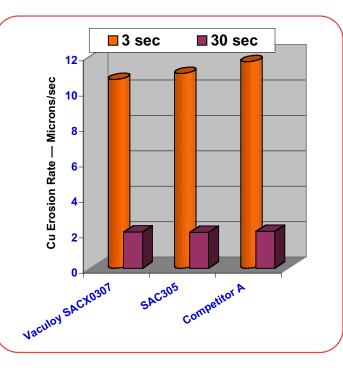
Wetting Performance Results by Flux Technology

Flux Type		BASELINE SAC305	Vacu SACX(Compet	itor A	
Flux Base	Solids Content	Flux Name	T° Seconds	T° Seconds	% increase	T° Seconds	% increase
Water	3.50%	Competitor B	0.60	0.90	50%	1.25	108%
Water	3.50%	ALPHA EF-2202	0.60	0.75	25%	1.00	67%
Water	6.20%	ALPHA EF-3215	0.50	0.75	50%	1.00	100%
Alcohol	2.50%	ALPHA RF-800	0.50	0.75	50%	0.90	80%
Water	10%	ALPHA EF-4102	0.50	0.60	20%	0.75	50%

As a general rule a wetting time of greater than one second is considered unacceptable in the wave solder process. Competitor A: Leading competitor's Sn/Cu-based alloy

Wide Flux Technology Process Window

- The variation of the wetting speed from low to medium solid fluxes is less for ALPHA Vaculoy SACX0307 (0.3 sec) than for Competitor A (0.5 sec).
- This gives greater flexibility for flux selection with lower solids contents.



Copper Dissolution Rates

- Test Results Summary
- Management of Copper levels

BACK TO MAIN MENU

Test Results Summary

The rate at which an alloy dissolves copper is important in maintaining good wave solder process control.

If the copper level increases, it can have the effect of increasing the liquidus temperature of the alloy. If this is not controlled, there will be a detrimental effect on the soldering process.

For Sn/Cu alloys, each 0.1% increase in Cu level will increase the liquidus by 2.5° Celsius

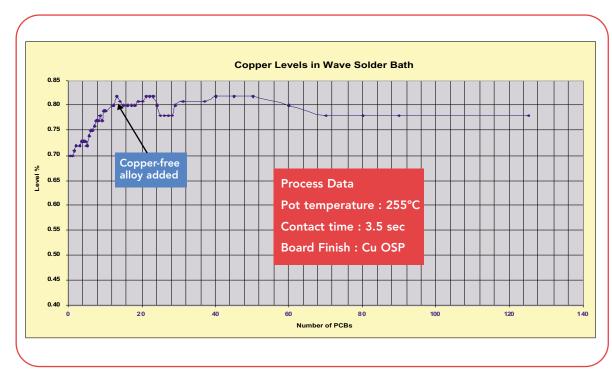
For SAC alloys, each 0.1% increase in Cu will increase the liquidus by 1.9° Celsius.

The test for copper dissolution involves dipping a copper wire specimen into the solder alloy for a specified time and then measuring the change in diameter. Flux, temperature and time are fixed.

Competitor A: Leading competitor's Sn/Cu-based alloy

Copper Dissolution Rates are Lower for ALPHA Vaculoy SACX0307

• Lower dissolution rate of copper will make copper levels in the bath easier to control.


The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

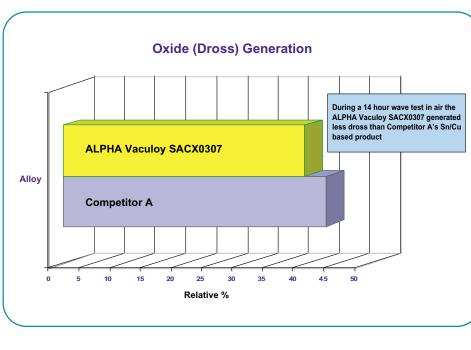
Management of Copper Levels

Copper Dissolution Rates

- Test Results Summary
- Management of Copper levels

BACK TO MAIN MENU


Management of levels of copper in the bath are important to maintain good yields.


To maintain the levels of copper, it is suggested that the bath be analyzed at intervals of every 8000 boards and that the levels be controlled by adding SACX0300 alloy as a make-up.

Regular measurement and analysis during the early stages of processing will help to gauge the equilibrium point and guide the frequency on monitoring.

Cookson Electronics

Rate of Dross Formation

Lower Rates of Oxide (i.e., dross) Generation

- Reduced solder consumption, frequency of pot maintenance and chance of oxide contamination of the solder joint.
- Careful removal of oxide is required to maximize cost savings.

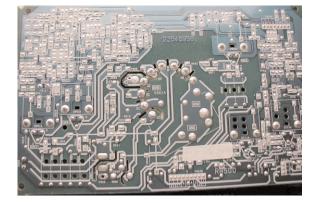
The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

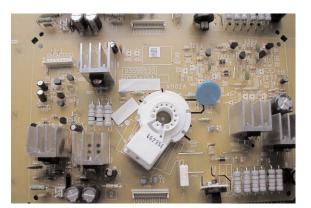
Dross formation is directly related to the Total Cost of Ownership of the material. The lower the dross formation, the lower the cost of soldering each joint.

Alloy purity: Some impurities increase dross formation

Alloy conditioning: Chemical treatments can reduce dross formation

Alloy additives: Change the type of dross produced (dry powder as opposed to emulsified "wet" dross)


ALPHA Vaculoy SACX0307 has been engineered for optimal performance.


Competitor A: Leading competitor's Sn/Cu-based alloy

regarding

14

Through Hole Test

Production boards from a TV producer were soldered using three alloys : ALPHA Vaculoy SAC305, ALPHA Vaculoy SACX0307 and ALPHA Vaculoy 63/37.

Pull tests were conducted on three types of components and the max force to failure was recorded.

Tensile testing equipment was used to conduct the tests.

Tin Technology Ltd. undertook the testing.

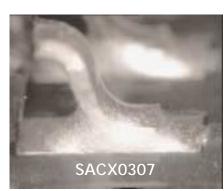
		Alloy		
		Baseline SAC305	SACX0307	63/37
Component		Force (Newtons)		
Large Resistors	Mean	66	72	79
Large Resistors	Std Dev		11	14
Heat Sink Pins	Mean		202	192
	Std Dev		19	23

Mechanical Joint Strength Equivalent to Industry Standard Vaculoy SAC305

• Through Hole Test

• Joint Formation

- Surface Mount Shear Strength
- Thermal Cycling


BACK TO MAIN MENU

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

All joints soldered using same process conditions and flux.

Mechanical Reliability

- Through Hole Test
- Joint Formation
- Surface Mount Shear Strength
- Thermal Cycling

BACK TO MAIN MENU

Full Fillets Ensure Mechanically Sound Joints

- Equal to or better than Industry Standard SAC305.
- Superior joint formation to Competitor A product.
 - Good toe and heel wetting.
 - Good wetting angles.
 - Smooth regular grain structure.

Competitor A: Leading competitor's Sn/Cu-based alloy

Surface Mount Shear Strength

Preferred result : High shear force and low Std De	Chip Shear			
		Baseline SAC305	SACX0307	Competitor A
Component			Force (Newtons)	
1208 Chip Resistor	Mean		140	115
	Std Dev	25	12	20

Mechanically Strong Surface Mount Joints

 Shear testing of 1206 chip resistors generated excellent results for ALPHA Vaculoy SACX0307.

Competitor A: Leading competitor's Sn/Cu-based alloy

Mechanical Reliability

- Through Hole Test
- Joint Formation
- Surface Mount Shear Strength
- Thermal Cycling

BACK TO MAIN MENU

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Thermal Cycling

	Number of Failures						
No of Cycle	Baseline SAC305	Vaculoy SACX0307	Competitor A	63/67	Sn99.3/C u0.7		
400	Zero	Zero	Zero	Zero	Zero		
800	Ongoing	Ongoing	Ongoing	Ongoing	Ongoing		

Test Conditions

- Cycle parameters: -40° to +125° Celsius, 40 minute cycle, 10 minute soak at upper and lower temperature.
 - Number of cycles: 400 to date 1000+ cycles planned
 - Boards: CPS test board, Cu OSP pad finish.
 - Alloys: ALPHA Vaculoy SACX0307, Industry Standard SAC305, Competitor A, Sn99.3/Cu0.7 and Sn63/Pb37.
 - Number of circuits per board: 24 circuits each with 50 surface mount resistors, 1206 and 0804 in each circuit, wired in series.
 - Failure measured as resistance increases across circuit at % above threshold value (TBD after initial variances are measured).

Competitor A: Leading competitor's Sn/Cu-based alloy

Thermal Mechanical Reliability Comparable to 63/37 and Industry Standard SAC305

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

- Through Hole Test
- Joint Formation
- Surface Mount Shear Strength
- Thermal Cycling

Recommended Process Parameters

Wave Configuration	Process Parameter	Suggested Process Settings
	Pot Temperature	255°-265° Celsius (491°-509° F)
	Conveyor Speed	1.0-1.5m/min (3.3-5 ft/min)
	Contact Time	2.3-2.8 seconds
Single Wave	Wave Height	1/2 to 2/3 of board thickness
	Dross Removal	Once per 8-hour run time
	Copper Check	Every 8,000 boards until 40,000
	Pot Temperature	255°-265° Celsius (491°-509° F)
	Conveyor Speed	1.0-1.5m/min (3.3-5 ft/min)
	Contact Time	3.0-3.5 seconds
Dual Wave	Wave Height	1/2 to 2/3 of board thickness
	Dross Removal	Once per 8-hour run time
	Copper Check	Once per 8-hour run time Every 8,000 boards until 40,000

Rework

Glossary

Recommended Process

• Material Safety Data Sheet

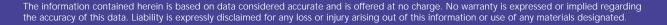
• Troubleshooting Guide

BACK TO MAIN MENU

Parameters

Changing a Solder
Technical Bulletin

Evaluation Guide
Material Technical Sheet
ALPHA Flux Product Line


Changing a Solder Bath from Sn/Pb to Lead-Free


- Remove the pumps, wave guides and flow ducts from the solder bath.
- Drain the Sn/Pb material from the solder bath.
- Clean the solder bath, removing all visible deposits of Sn/Pb alloy. Suitable respiratory protective equipment, safety glasses/visor and gloves must be worn.
- Clean the pumps, wave guides and flow ducts using the same procedure as above.
- Load the wave pot with pure tin (available in chunks and bars).
- Re-assemble the pumps, wave guides and flow ducts.
- Take pot temperature to 260° Celsius and switch on the chip and main waves and allow the metal to circulate for 30 minutes. This will remove any remaining lead contamination from the pot.
- 8 Drain the tin wash from the wave pot.
- 9 Load the Lead-Free solder in the same way as above and take a sample of the pot to establish a baseline composition.

Application Information

- Recommended Process
 Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary

For more information. Click on arrow.

DESCRIPTION

4.744 Vacadoy SACIDIDT is a lead-tree alloy dutation for use as a reglacement for SHD alloy in the value adder process. The SACIDIDD variantis used to stabilize / reduce the copper content in the value solder tash, this requirement will depend an process. and time. At with all Apta Metals for coder. Apta t proprietary Usakoy* alcoing protect is used to renove writin imparties. particularly orides. The product is further enhanced with the addition of 2 minor elements to reduce drops formation and improve the joint nonmatics.

FEATURES & BENEFITS

Features

- YHELD Comparable to SAC305, superior performance for bridging compared to Snikk SICult 7 based allogs.
 WETTING SPREED 0.75 records trigical weaking speed compares to SAC305 at 0.65 sec and superior to Snikk SICu07 based
- allogs at 10 per.
 ORDSSIGENERATION leverat in class due to the Vaculay process in conjunction with the addition of a dross reducing agent.

Repetitor:

Lowers Total Cost of Denership due to the lower material cost. high yields and low dross paneration.

ALPHA VACULOY SACX0307 LEAD-FREE WAVE SOLDER ALLOY

- Greet arrivation of the starting of the first starting starting start and the over greet and the over greet and the starting start area over the starting st

The proprietary Veculary process is a highly effective method for removing individed oxides from solder. This is extremely Important because included onlikes generate ensective directing and increase the electrity of the solder. Solder with higher electricity can result in increased soldering detects (in solder bridging)

APPLICATION

ALPHA VACULOY SACKIOF7 is suitable for save coldering and surface mount applications for electronic asperiblers interested in implementing a lead-the process. It is subed to single side and mixed technology boards. A mider partemperature #1258 - 285° C (401 --58097)is recommended with a contact time 2.3 - 3.5 seconds. For suitable wave solder fluxes, please see our selector gate. Laad hee Reclaim services including dedicated lead hee containers are also anallable, please consult your local cales office.

AVAILABILITY

ALFHA VACULOY SACCORDI7 is trailable in:

- Tig (2.2h) solder hars
- 3 Skg feeder hers
- Suider dranks
- Other terms, for example wire solders, are available on request

US Paters d825d23

æ Cookson Electronics Assembly MATCHIALS

top on 3

Cookson Electronics

Recommended Process

Material Safety Data Sheet

Material Technical Sheet

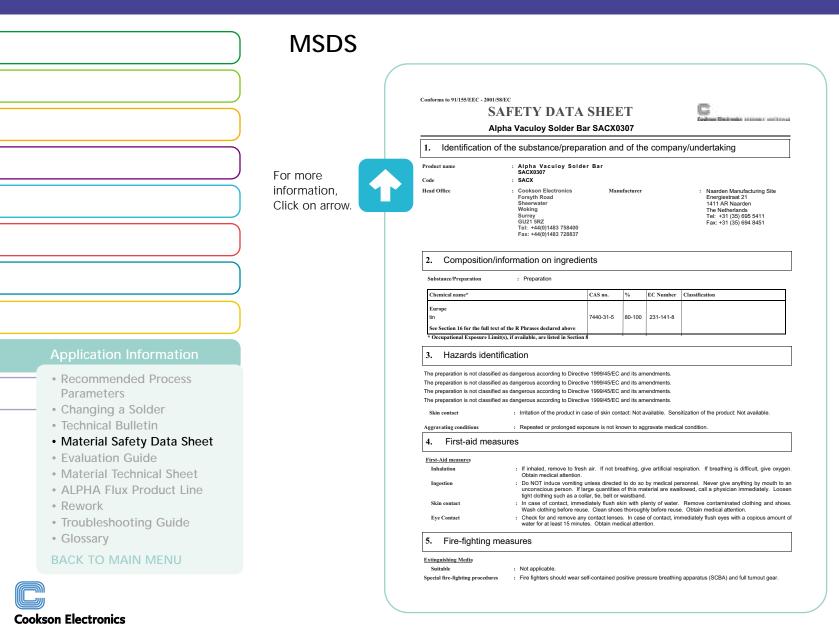
ALPHA Flux Product Line

• Troubleshooting Guide

BACK TO MAIN MENU

Parameters

Changing a Solder


Technical Bulletin

• Evaluation Guide

Rework

Glossary

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

22

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Evaluation Guide

- For loading of alloy into wave machine, follow instructions "Changing a solder bath from Sn/Pb to Lead-Free," included in this manual.
- If changing flux, please refer to Evaluation Guide included in the Flux Product Manual.
- Make sure that the solder pot and wave are free from dross.
- Check that pot temperatures is set at correct level.
- Ensure that the conveyor height is sufficient to give clearance above wave former on any through hole leads.
- Set the contact time using a wave profile device or glass plate. Adjust the conveyor speed and wave height accordingly.
- Check fingers and pallet for cleanliness.
- FLUX: Check for uniform spray on the board and measure flux loading. Compare with recommended levels.
- FLUX: Measure the top side preheat with flux applied to the bottom side board. Adjust temperature setting on the machine to achieve recommended temperature.

Application Information

- Recommended Process
 Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary

Solidus

Material Technical Data

	0010100	217	220
Liquidus	Celsius	228	228
Stress at MAX Load (N/mm ²)	Mean Std Dev	30 1	28 3
Elongation at Failure %	Mean Std Dev	22 9	23 8
Hardness	HV	14.1	11.3
Density	g/cc	7.34	7.33
Specific Heat Capacity	J/kg C	0.17	0.25
Thermal Expansion Coefficient	(30°-100°C)/Cx10 ⁻⁵ (100°-150°C)/Cx10 ⁻⁵	1.79 2.30	1.88 2.56

Celsius

SACX0307

217

228

Competitor A: Leading competitor's Sn/Cu-based alloy

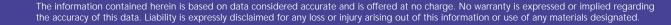
Cookson Electronics

Rework

Glossary

Recommended Process

• Material Safety Data Sheet


• Troubleshooting Guide

BACK TO MAIN MENU

Parameters

Changing a Solder
Technical Bulletin

Evaluation Guide
Material Technical Sheet
ALPHA Flux Product Line

ALPHA Flux Product Line: A solution for every need.

ALPHA EF-Series of environmentally friendly fluxes are designed to keep your process fully productive. Whether you specialize in consumer products, telecommunications, automotive or high product-mix production, you'll find ALPHA EF-Series fluxes will meet your needs for higher yield and throughput. Select the EF-Series product that is right for your needs.

	Water-Based			Alcohol-Based	
Features	EF-2202	EF-3001	EF-3215	EF-4102	EF-9301
Appearance	Clear	Milky	Milky	Amber	Pale Yellow
Resin/Rosin Content	0%	<5%	<5%	<10%	<6%
VOC Content	<2%	<1%	<2%	<10%	<93%
Lead-Free Compatible	Y	Y	Y	Y	Y
Bellcore Compliant	Y	Y	Ν	Y	Y
Wetting/Hole Fill	2	3	1	1	1
Solderballing	1	2	2	1	1
Pin Testability	1	3	2	-	1
Cleanability	2	3	3	3	3
Tack	-	2	2	2	2
Conformal Coating	1	1	1	-	-
Joint Cosmetics	1	2	2	1	1 (Full Dulling)*
Selective Soldering	1	3	2	-	-

Note: 1=Superior, 2=Excellent, 3=Good, Y=Yes, N=No *In product category

Application information

- Recommended Process
 Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary

BACK TO MAIN MENU

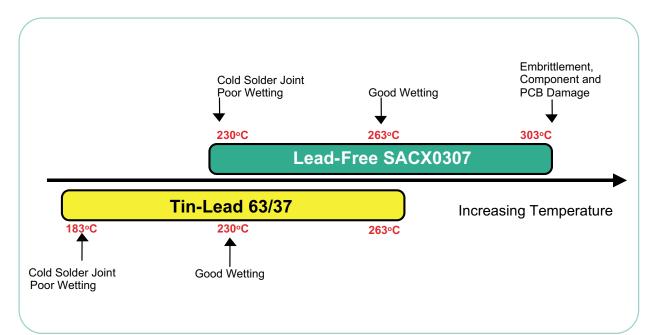
Cookson Electronics

Selector Guide

ALPHA EF-Series Water-Based Fluxes

Series	Product	Application
ALPHA EF-2000	ALPHA EF-2202	EMS, Telecom, Computer
ALPHA EF-3000	ALPHA EF-3001, ALPHA EF-3215	Consumer Products, Automotive
ALPHA EF-4000	ALPHA EF-4102	Consumer Products

ALPHA EF-Series Alcohol-Based Fluxes


Series	Product A	pplication	
ALPHA EF-9000	ALPHA EF-9301 C	onsumer Products	
CEAIN'S Leading A			
	Product	Application	
Series		Application Universal	
Series ALPHA RF-800	Product		
CEAM's Leading A Series ALPHA RF-800 ALPHA SLS-65 Water-Soluble	Product RF-800 Universal, No-Clean	Universal	

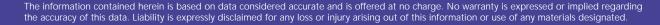
Application Information

- Recommended Process
 Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary

Elevated Rework Temperature Effects

Recommended Process

- Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary


BACK TO MAIN MENU

Cookson Electronics

Lead-Free Rework Considerations:

- Heat transfer to the component and board is less controlled than any other process due to manual nature of repair work.
- Soldering iron tips will corrode quicker using high-tin lead-free alloys.

Use CEAM's new ALPHA Vaculoy SACX0307 cored wire and target the optimum rework temperatures to deliver reliable joints.

Recommendations for Successful Lead-Free Joint

Application Information

- Recommended Process
 Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary

BACK TO MAIN MENU

Impact of Higher Soldering Temperatures and Longer Contact Times:

- Increased chances of
 - Printed circuit board and/or component damage
 - Generation of more intermetallics and hence brittle joint
 - Premature flux fuming, yielding less flux on the joint, during the rework process

Manual rework training for lead-free will be required in the transition to lead-free.

Solder Iron Requirements

Solder Iron Settings

- Temperature of piece that is to be soldered (not the iron) should be around 250°C (482°F) and the solder iron tip should be a temperature of about 370°C (698°F).
 This should give an acceptable heat transfer time using the correct tip size.
- Aim for a contact time of 2-3 seconds. Overheating a joint damages the board and may lead to board reliability issues over the lifetime of the product.
- Use a soldering iron bit that is suitable (see figure above): a bit that is too small may prevent the formation of a joint or slow down the rework operation.
- Do not overheat as this can cause an increase in the depth of the intermetallic layer resulting in a weaker joint.

Planning the processing methods for the manual rework operation is critical to delivering a reliable lead-free process.

- Recommended Process
 Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary

Barriers to a Successful Lead-Free Joint

Solutions to Lead-Free Rework Issues:

- Minimize heat transfer to the board and component more heat = more potential damage.
- Use lead-free alloy with fastest wetting speed and lowest melting point, typically rework alloy should be the same as the wave solder alloy.
- Ensure that there is enough flux on the joint to make a bond in the shortest time possible.
- Use an iron with suitable controller that minimizes its temperature variance.

Cookson Electronic Assembly Materials provides solutions for your lead-free processing issues.

Recommended Process

Material Safety Data Sheet

Material Technical Sheet
ALPHA Flux Product Line

• Troubleshooting Guide

BACK TO MAIN MENU

Parameters • Changing a Solder

Technical Bulletin

• Evaluation Guide

Rework

Glossary

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Troubleshooting Guide

For more information, Click on the arrow

Application Information

- Recommended Process
 Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary

BACK TO MAIN MENU

Wavesoldering No-Clean CS Process Troubleshooting Welcome! This guide was designed to help the process engineer determine the solder process is complex and many variables interact to produce the

results, it is difficult to pinpoint the exact cause and solution. This guide will provide the user with several cause and solutions that could affect the process and result in the selected defect. Refer to the Wavesolder Machine and Process section for more information on how machine parameters affect the process and nominal parameter values. The board and component quality, type of solder mask, flux chemistry, component orientation and lead length are some of the non-machine variables that will affect the process and must also be considered.

Glossary

Solidus: The temperature at which the transition from solid to liquid starts.

Liquidus: The temperature above which, in equilibrium, all the alloy should be in the liquid phase. In the temperatures between solidus and liquidus, there will be crystals of solid in equilibrium with liquid alloy.

Hardness: A measure of a material's resistance to deformation. The Vickers test applies a load to a pyramidshaped indentor pressed into the alloy for a few seconds. The size of the indentation is measured and converted to a number to describe the hardness – the higher the number, the harder the alloy. Solders generally have values between 10 and 20 at room temperature.

Density: Weight divided by volume, usually expressed as grams per cubic centimeter, or as kgs per cubic meter. The alloy must be solid (no cavities or voids) for the figure to be accurate.

Specific heat capacity: A measure of the energy required to increase the temperature of one gram or one kilogram of solid material by one degree Celsius. An equal amount of heat is given out by the material when it cools by one degree Celsius.

Stress at maximum load: Derived from the stress strain curve measured during a tensile test. During the test the strain (elongation) continues at the predefined constant speed, and the instantaneous loads required to do this are measured by a load cell. The stress quoted is the maximum load recorded divided by the original cross sectional area of the test piece.

Elongation at failure: The increase in length of the test piece at the moment of failure in a tensile test divided by the original length and expressed as a percentage. Higher values indicate greater ductility, but the scatter of results can be quite high, particularly with cast structures.

Thermal expansion coefficient: The fractional change in length of solid material caused by a temperature rise of one degree Celsius. Usually this is expressed as parts per million. This value changes slightly according to the temperature range in which it is measured.

Application Information

- Recommended Process
 Parameters
- Changing a Solder
- Technical Bulletin
- Material Safety Data Sheet
- Evaluation Guide
- Material Technical Sheet
- ALPHA Flux Product Line
- Rework
- Troubleshooting Guide
- Glossary

A New Lead-Free Solder Alloy High Yield, Low Maintenance and Reliability

Delivers better yield than all Sn/Cu-based products

- Total cost of ownership lowest in class
- Wetting speed faster than all Sn/Cu-based products

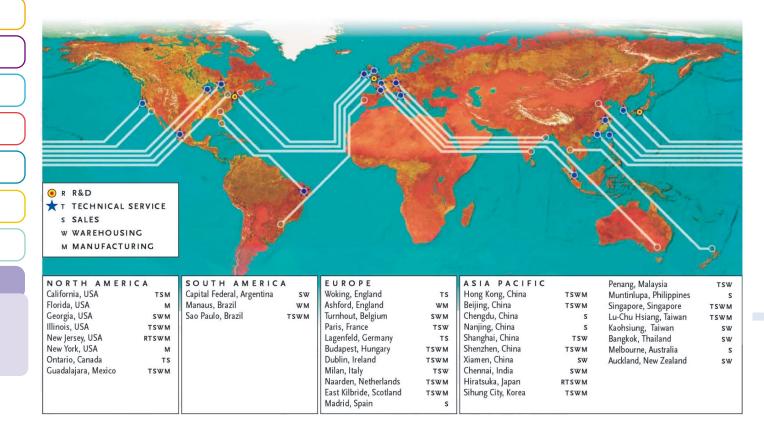
Delivers low levels of process maintenance

- Low levels of dross generation
- Low levels of Copper dissolution

Delivers high joint reliability

- Mechanical pull and shear tests demonstrate joint strengths equivalent to tin lead and SAC305
- Thermal cycling tests to date indicate comparable reliability

Summary


BACK TO MAIN MENU

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of this information or use of any materials designated.

Worldwide Capacity

Cookson Electronics helps make you more efficient and profitable with enabling technology, products and service support available worldwide.

For additional information, visit Cookson Electronics Assembly Materials at www.alphametals.com

Summary

TECHNICAL BULLETIN

ALPHA VACULOY SACX0307 LEAD-FREE WAVE SOLDER ALLOY

DESCRIPTION

ALPHA Vaculoy SACX0307 is a lead-free alloy suitable for use as a replacement for Sn63 alloy in the wave solder process. The SACX0300 variant is used to stabilize / reduce the copper content in the wave solder bath, this requirement will depend on process conditions. As with all Alpha Metals bar solder, Alpha's proprietary Vaculoy[™] alloying process is used to remove certain impurities, particularly oxides. The product is further enhanced with the addition of 2 minor elements to reduce dross formation and improve the joint cosmetics.

FEATURES & BENEFITS

Features:

- □ YIELD Comparable to SAC305, superior performance for bridging compared to Sn99.3/Cu0.7 based alloys.
- □ WETTING SPEED 0.75 seconds typical wetting speed compares to SAC305 at 0.65 sec and superior to Sn99.3/Cu0.7 based alloys at 1.0 sec.
- DROSS GENERATION lowest in class due to the Vaculoy process in conjunction with the addition of a dross reducing agent.

Benefits:

- Lowers Total Cost of Ownership due to the lower material cost, high yields and low dross generation.
- Gives very good solderability due to the fast wetting speed.
- Gives very good drainage and hence lower levels of bridges due to the formulation containing Silver.
- Delivers good performance across a range of flux technologies.

The proprietary Vaculoy process is a highly effective method for removing included oxides from solder. This is extremely important because included oxides generate excessive drossing and increase the viscosity of the solder. Solder with higher viscosity can result in increased soldering defects (i.e solder bridging)

APPLICATION

ALPHA VACULOY SACX0307 is suitable for wave soldering and surface mount applications for electronic assemblers interested in implementing a lead-free process. It is suited to single side and mixed technology boards. A solder pot temperature of 255 - 265° C (491 – 509F) is recommended with a contact time 2.3 – 3.5 seconds. For suitable wave solder fluxes, please see our selector guide. Lead free Reclaim services including dedicated lead free containers are also available, please consult your local sales office.

AVAILABILITY

ALPHA VACULOY SACX0307 is available in:

- 1kg (2.2lb) solder bars
- 3.5kg feeder bars
- Solder chunks
- Other forms, for example wire solders, are available on request

* US Patent 4929423

Cookson Electronics ASSEMBLY MATERIALS

Issue 3

Cookson Electronics ASSEMBLY MATERIALS

HEALTH & SAFETY

Please refer to MSDS for advice on proper handling and safety instructions.

TECHNICAL SPECIFICATION

US Patent 4929423

Material Property	Units	Vaculoy SACX
Solidus	Celsius	217
Liquidus	Celsius	228
Hardness	HV	14.1
Density	g/cc	7.34
Specific Heat Capacity	J/kg C	0.17
Stress at MAX Load (N/mm ²)	Mean	29.5
	SD	0.64
Elongation at failure (%)	Mean	21.8
	SD	8.8
Thermal Expansion Coefficient	(30 - 100C)/C x 10 ⁻⁵	1.79
	(100 - 150C)/C x 10 ⁻⁵	2.30

RECOMMENDED PROCESS SETTINGS

Wave Configuration	Process Parameter	Suggested Process Settings
Single Wave	Pot temperature	255 - 265 Celsius (491 - 509 F)
	Conveyor speed	1.0 - 1.5 m/min (3.3 - 5 ft/min)
	Contact time	2.3 - 2.8 seconds
	Wave Height	1/2 to 2/3 of board thickness
	Dross removal	Once per 8 hour run time
	Copper Check	Every 8,000 boards until 40,000
Dual Wave	Pot temperature	255 - 265 Celsius (491 - 509 F)
	Conveyor speed	1.0 - 1.5 m/min (3.3 - 5 ft/min)
	Contact time	3.0 - 3.5 seconds
	Wave Height	1/2 to 2/3 of board thickness
	Dross removal	Once per 8 hour run time
	Copper Check	Every 8,000 boards until 40,000

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated.

Return to Product Manual

Cookson Electronics ASSEMBLY MATERIALS

MANAGEMENT OF COPPER LEVELS IN THE SOLDER BATH

Management of the copper level in the wave solder bath is critical to ensure low defects in the soldering process. There is a tendency for the copper levels of the SACX0307 materials to increase due to the leaching effect of the solder wave on the board and components. This effect is at its most severe when using an OSP Copper finish on the PCB.

Studies have shown a typical leaching rate of **0.01% Cu per 1000 boards**. Each process is unique this is an indication only of the leaching rate (based on actual data).

It is recommended that the copper is controlled at between 0.7% and max 1.0% for SACX0307 alloy. If the copper levels are higher than 1.0% then this will increase the liquidous temperature which in turn may mean that the solder bath temperature has to be increased to maintain the process yields.

The copper levels in the bath can be controlled by means of adding **SACX0300** to the wave solder pot. It may be the case that equilibrium can be attained by continuing with SACX0300 additions as the only means of solder top up, however each process is unique and we would recommend regular analysis of the solder bath so that good control of copper can be maintained. This analysis service is available from **Cookson Electronics Assembly Materials**, contact your local office for details.

RECOMMENDED ACTION LEVELS FOR WAVE SOLDER IMPURITES

Please find below a list of recommended action levels for wave solder bath impurities. For information of specific action plans to bring your solder bath back to an acceptable condition please contact your local sales office.

Aluminium*:	As little as 0.0005% may increase dross rate without affecting joint formation.
Arsenic:	Above 0.03% can cause dewetting.
Bismuth:	Bismuth should not be a contaminant in solder baths unless bismuth is present as a solderable coating on the board or on component terminations. If this is the case then some dulling of the solder joints may occur. Bismuth at low levels should not be a problem provided that lead contamination is not also present. If both elements are found then fillet lifting phenomena are more likely
Cadmium*:	At levels of 0.002% joint formation will be noticeably affected. At 0.005% there will be a high incidence of bridging and icicling, together with a diminution in joint strength.
Copper:	Copper levels will increase in many cases due to pick up from board surfaces. This causes the liquidous of the bath material to increase slightly. Generally systems are tolerant to levels up to 1.0% Cu, but in some cases it may be necessary to increase bath temperatures by a few degrees, or to correct the bath composition at an earlier stage.
Gold:	At levels of 0.1% and quite often less, the solder becomes sluggish and dull joints are formed.
Iron:	0.02% of iron can make joint formation gritty.
Lead:	The lead level that might be a problem is likely to depend on the board type, and criticality of application. It may also depend on the legislation in markets into which the products are sold. 0.35% should not be a problem on single sided boards.
Silver:	Silver is often an alloying element in lead-free solders. The presence of silver at levels over 0.1% can be tolerated in solder bath alloys originally devoid of silver but may be an indication that there is some other problem with the bath.
Zinc*:	The presence of zinc can cause dulling and create bridging and icicling. 0.005% can also cause lack of adhesion and grittiness.
Note:	*The effects of AI, Cd and Zn are cumulative. If more than one element is present the following lower maxima are suggested: 0.0005%, 0.002% and 0.001%

$\mathbf{\alpha}$							
Headquarters	Regional Sales Offices:	Belgium	Tel:	+32 (0) 14 44 50 00	Japan:	Tel:	+81 463 53 3333
Cookson Electronics Assembly Materials	-	Brazil	Tel:	+55 11 4353 2500	Korea:	Tel:	+82 31 499 1451
600 Route 440		France:	Tel:	+33 (0) 2 41 49 00 11	Mexico:	Tel:	+52 3 818 9500
Jersey City		Germany:	Tel:	+49 (0) 203 55540	Netherlands:	Tel:	+31 (0) 35 695 5411
NJ 07304, U.S.A.		Hong Kong:	Tel:	+852 3190 3100	Singapore:	Tel:	+65 6861 1977
Tel: +1 (201) 434 6778		Hungary	Tel:	+36 (0) 24 460 72 0	Taiwan:	Tel:	+886 (3) 322 2721
Fax: +1 (201) 434 7508		India:	Tel:	+91 44 625 2666	UK:	Tel:	+44 (0) 1483 793100
www.alphametals.com		Ireland:	Tel:	+353 (0) 1 842 1172	USA - Elgin:	Tel:	+1 (847) 697 1735
		Italy:	Tel:	+39 (0)2 38 33 11	Ŭ		· · ·

The information contained herein is based on data considered accurate and is offered at no charge. No warranty is expressed or implied regarding the accuracy of this data. Liability is expressly disclaimed for any loss or injury arising out of the use of this information or the use of any materials designated.

Return to Product Manual

SAFETY DATA SHEET

Alpha Vaculoy Solder Bar SACX0307

1. Identification of the substance/preparation and of the company/undertaking

Product name	: Alpha Vaculoy Solder Bar SACX0307		
Code	: SACX		
Head Office	: Cookson Electronics Forsyth Road Sheerwater Woking Surrey GU21 5RZ Tel: +44(0)1483 758400 Fax: +44(0)1483 728837	Manufacturer :	Naarden Manufacturing Site Energiestraat 21 1411 AR Naarden The Netherlands Tel: +31 (35) 695 5411 Fax: +31 (35) 694 8451

2. Composition/information on ingredients

Substance/Preparation

: Preparation

Chemical name*	CAS no.	%	EC Number	Classification
Europe tin	7440-31-5	80-100	231-141-8	
See Section 16 for the full text of the R Phrases declared above				

3. Hazards identification

The preparation is not classified as dangerous according to Directive 1999/45/EC and its amendments.

The preparation is not classified as dangerous according to Directive 1999/45/EC and its amendments.

The preparation is not classified as dangerous according to Directive 1999/45/EC and its amendments.

The preparation is not classified as dangerous according to Directive 1999/45/EC and its amendments.

Skin contact

Aggravating conditions

: Irritation of the product in case of skin contact: Not available. Sensitization of the product: Not available.

: Repeated or prolonged exposure is not known to aggravate medical condition.

4. First-aid measures

<u>First-Aid measures</u>	
Inhalation	: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Obtain medical attention.
Ingestion	 Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If large quantities of this material are swallowed, call a physician immediately. Loosen tight clothing such as a collar, tie, belt or waistband.
Skin contact	: In case of contact, immediately flush skin with plenty of water. Remove contaminated clothing and shoes. Wash clothing before reuse. Clean shoes thoroughly before reuse. Obtain medical attention.
Eye Contact	: Check for and remove any contact lenses. In case of contact, immediately flush eyes with a copious amount of water for at least 15 minutes. Obtain medical attention.

5. Fire-fighting measures

Extinguishing Media

Suitable Special fire-fighting procedures : Not applicable.

: Fire fighters should wear self-contained positive pressure breathing apparatus (SCBA) and full turnout gear.

Return to Product Manual

Date of issue	: 04/12/2003.

Alpha Vaculoy Solder Bar SACX0307

6. Accidental release measures

Personal Precautions: Splash goggles. Full suit. Boots. Gloves. Suggested protective clothing might not be sufficient; consult a
specialist BEFORE handling this product.Environmental precautions and
cleanup methods: Use a shovel to put the material into a convenient waste disposal container. Finish cleaning by spreading water
on the contaminated surface and allow to evacuate through the sanitary system.

Note: See section 8 for personal protective equipment and section 13 for waste disposal.

7. Handling and storage

Handling	: No specific safety phrase has been found which is applicable for this product.
Storage	: Keep container tightly closed. Keep container in a cool, well-ventilated area.
Packaging materials	
Recommended use	: Use original container.
Danish Fire Class	: Not applicable.

8. Exposure controls/personal protection

Engineering measures : Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.			
Hygiene measures	: Wash hands after handling compounds and before eating, smoking, using lavatory, and at the end of day.		
Ingredient Name	Occupational Exposure Limits		
Europe			
tin	ACGIH TLV (United States, 2001). Skin		
	STEL: 0.2 mg/m ³ 15 minute(s).		
Sweden			
Denmark			
Norway			
France			
Natharlan da			
Netherlands	Nationala MAC lijet (Natherlanda, 2004). Natao, Tantativa		
tin	Nationale MAC-lijst (Netherlands, 2001). Notes: Tentative TGG 8 uur: 2 mg/m ³ 8 hour(s).		
Germany	. ,		
Finland			
tin	Työterveyslaitos (Finland, 2002).		
	TWA: 2 mg/m ³ 8 hour(s).		
United Kingdom (UK)			
tin	EH40-OES (United Kingdom (UK), 2002).		
	TWA: 2 mg/m ³ 8 hour(s). STEL: 4 mg/m ³ 15 minute(s).		
Austria			
tin	BMWA_MAK (Austria, 2001).		
	STEL: 4 mg/m ³ 4 times per shift, 15 minute(s).		
	TWA: 2 mg/m ³ 8 hour(s).		
Switzerland			
Belgium			
tin	Lijst Grenswaarden (Belgium, 1998). Skin VL: 2 mg/m ³ 8 hour(s).		
Spain	ve. 2 mg/m o nour(o).		
tin	INSHT (Spain, 2001).		
	TWA: 2 mg/m ³ 8 hour(s).		
Personal protective equipment			
Skin and body	: Lab coat.		
Eyes	: Safety glasses.		
v			
	Return to Product Manual		

Date of issue	: 04/12/2003.	Page: 2/4

9. Physical and chemical properties

Physical state	: Solid.
Colour	: Silvery.
Odour	: Not available.
рН	: Not applicable.
Melting point	: 231.8°C (449.2°F) based on data for: tin.
Flash point	: Not applicable.
Explosive properties	: Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.
Oxidizing properties	: Not available.
Density	: The only known value is 7.31 g/cm ³ (tin).
Solubility	: Insoluble in cold water, hot water.

10. Stability and reactivity

Stability

: The product is stable.

Hazardous decomposition products :

11. Toxicological information

Local effects

Chronic toxicity

: Repeated or prolonged exposure is not known to aggravate medical condition.

12. Ecological information

13. Disposal considerations

Methods of disposal ; Waste of residues ; Contaminated packaging	:	Waste must be disposed of in accordance with federal, state and local environmental control regulations.
Waste Classification	:	Not applicable.
European Waste Catalogue (EWC)	:	Not available.
Hazardous Waste	:	To present knowledge of the supplier, this product is not regarded as hazardous waste as defined by EU Directive 91/689/EC.

14. Transport information

International transport regulations

Regulatory Information	UN number	Proper shipping name	Class	Packing group	Label	Additional Information
ADR/RID Class	Not regulated.	-	-			-
IMDG Class	Not regulated.	-	-			-
IATA-DGR Class	Not regulated.	-	-			-

15. Regulatory information

EU Regulations				
Risk Phrases	: This product is not classified according to the EU regulations.			
Product Use	 Classification and labelling have been performed according to EU direc including amendments and the intended use. Industrial applications. 	tives 67/548/EEC, 1999/45/EC,		
Additional Warning Phrases	: Safety data sheet available for professional user on request.			
EC Statistical Classification	: 32089091			
(Tariff Code) Return to Product Manual				
Date of issue : 04/12/2003. Page: 3/4				

Alpha Vaculoy Solder Bar SACX0307

National regulations		
<u>Denmark</u>		
Additional Warning Phrases	:	Not applicable.
Denmark – Cancer Risks	:	Not available.
Denmark – Restrictions on Use	:	Not available.
Statutory Order 571 on Aerosols	:	Not applicable.
Aerosois <u>Netherlands</u>		
K-Klasse	:	K5
CPR	:	Not regulated.
SHHR	:	0ZZ
Germany		
Ordinance on Combustible	:	Class: Omitted
Liquids Technical instruction on air	:	Class III 3.1.4: 0.7%
quality control Hazard class for water	:	2

16. Other information

Full text of R-Phrases with no. appearing in Section 2 - Europe Text of classifications appearing in Section 2 - Europe <u>HISTORY</u>	:	
Date of printing	:	04/12/2003.
Date of issue	:	04/12/2003.
Date of previous issue	:	No Previous Validation.
Version	:	1
Prepared by	:	Simon Hosken Environmental, Health and Safety Manager

Notice to Reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

	_	
Version 1		Page: 4/4