Where Productivity Meets Profitability

Published: 01 September 2016 by Jeff Mogensen

Buyers' and sellers' insights on how variables like cycle time, uptime and quality affect profit, return on investment and manufacturing capacity.

In the electronics industry we study specifications, test materials, conduct demonstrations and complete exhaustive in-house evaluations to prove application fit.

But what about financial fit? We're well-versed at understanding how a product affects an assembly process, but understanding how a product or service impacts business metrics is often more difficult to predict.

For end-users and consumers, wouldn't it be beneficial to understand financial potential right from the start? Understanding financial benefits early in the thought process could speed decisions on whether a product is something to consider, and later could help compare brands, support justification and sort out investment priorities.

Financial comparisons can help build a stronger value proposition and provide prospective customers a compelling reason to consider a product. From the supplier perspective, wouldn't it be beneficial to correlate and promote process performance to financial benefits? A financial foundation may also be helpful differentiating a product from the competitors'.

Herein, we look at buyers' and sellers' insights on how variables like cycle time, uptime and quality affect profit, return on investment and manufacturing capacity. The calculator used helps show the effect of the *input* on the *output*. It focuses on assembly variables offering the most impact on manufacturing and business performance. Leading variables and the ones focused on here are cycle time, downtime and yield. While these figures won't necessarily mirror every factory operation, they are a pretty good indicator of potential benefits. Figures could be easily changed in the model based on a specific application.

Baseline Comparison

Let's start by using one manufacturing scenario to see how changes in cycle time, yield, and downtime impact financial performance. In this example we make conservative changes like decreasing cycle time by one second, increasing yield by 1% and reducing downtime thirty minutes each day.

The following results show even small incremental gains in productivity have a big impact on profitability and manufacturing capacity. In this case the combined benefit of these three conservative improvements delivers an increase in profitability of more than 12%. Let's start by looking at the variables individually.

Yield improvement. Yield can be improved in many ways throughout a process. In this example, a 1% increase (93% to 94%) in yield equates to a profit increase of over 1%, or \$8,500 annually (TABLE 1).

Table 1.	Yield	Improvement	Effects

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	S -	
Variable: Average cycle time reduction (seconds) 0		
Variable: Yield improvement (percentage)	1.00%	
Benefit: Capacity increase (percentage)	0.00%	
Benefit: Profit increase (percentage)	1.08%	
Return on Investment payback	0.0	(months)
ASSUMPTIONS	PROCESS A	PROCESS B
	Α	В
Investment Value (\$ US)	0	0
Average line cycle time (seconds)	30	30
Yield first pass (%)	93.0	94.0
Hours per week	40	40
Unused time (set up, changeover, etc.)	6	6
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	0	80
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	212,160	212,160
Total Good Units Revenue	197,309	199,430
Unit cost (\$)	66	66
Unit Profit (\$)	4.00	4.00
Total Profit (\$)	789,235	797,722
Total increase in profit (\$)		8,486
% Increase in profit		1.08%
ROI (in years)		0.000
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Cycle time reduction. Faster is better. This example correlates speed relative to profitability. In this case we've reduced cycle time by one second and realize a profitability gain of 3.5% or \$27,000. There are many ways to grind out seconds in a process, and this math shows it's worth the time to search it out (TABLE 2).

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	S-	
Variable: Average cycle time reduction (seconds)	1	
Variable: Yield improvement (percentage)	0.00%	
Benefit: Capacity increase (percentage)	3.33%	
Benefit: Profit increase (percentage)	3.45%	
Return on Investment payback	0.0	(months)
ASSUMPTIONS	PROCESS A	PROCESS B
	Α	В
Investment Value (\$ US)	0	0
Average line cycle time (seconds)	30	29
Yield first pass (%)	93.0	93.0
Hours per week	40	40
Unused time (set up, changeover, etc.)	6	6
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	0	80
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	212,160	219,476
Total Good Units Revenue	197,309	204,113
Unit cost (\$)	66	66
Unit Profit (\$)	4.00	4.00
Total Profit (\$)	789,235	816,450
Total increase in profit (\$)		27,215
% Increase in profit		3.45%
ROI (in years)		0.000
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Converting downtime to uptime. The time variable is another critical component in maximizing profitability. In this example, 30 min. of unproductive time are converted to productive time per day, totaling 2.5 hr. per week. The profitability gain is more than 7%, adding \$58,000 in annual profit (TABLE 3).

Table 3.	Downtime	to Uptime	Conversion

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	S-	
Variable: Average cycle time reduction (seconds)	0	
Variable: Yield improvement (percentage)	0.00%	
Benefit: Capacity increase (percentage)	6.85%	
Benefit: Profit increase (percentage)	7.35%	
Return on Investment payback	0.0	(months)
ASSUMPTIONS	PROCESS A	PROCESS B
	A	В
Investment Value (\$ US)	0	0
Average line cycle time (seconds)	30	30
Yield first pass (%)	93.0	93.0
Hours per week	40	40
Unused time (set up, changeover, etc.)	6	3.5
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	0	80
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	212,160	227,760
Total Good Units Revenue	197,309	211,817
Unit cost (\$)	66	66
Unit Profit (\$)	4.00	4.00
Total Profit (\$)	789,235	847,267
Total increase in profit (\$)		58,032
% Increase in profit		7.35%
ROI (in years)		0.000
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Combining the benefits. Combining the three variables, an increase in profitability of 12% is realized, or nearly \$100,000 per year. The variables used to demonstrate the potential benefits are conservative: cycle time -1 sec., yield +1%, downtime -30 min. per day. This demonstrates the impact small incremental gains in productivity have on profitability (TABLE 4). Table 4. Cumulative Effects of Productivity on Profitability

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	S-	
Variable: Average cycle time reduction (seconds)	1	
Variable: Yield improvement (percentage)	1.00%	
Benefit: Capacity increase (percentage)	9.95%	
Benefit: Profit increase (percentage)	12.25%	
Return on Investment payback	0.0	(months)
ASSUMPTIONS	PROCESS A	PROCESS B
	A	В
Investment Value (\$ US)	0	0
Average line cycle time (seconds)	30	29
Yield first pass (%)	93.0	94.0
Hours per week	40	40
Unused time (set up, changeover, etc.)	6	3.5
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	0	80
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	212,160	235,614
Total Good Units Revenue	197,309	221,477
Unit cost (\$)	66	66
Unit Profit (\$)	4.00	4.00
Total Profit (\$)	789,235	885,908
Total increase in profit (\$)		96,673
% Increase in profit		12.25%
ROI (in years)		0.000
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Shop Floor ROI

Now that we've looked at the impact of variables incrementally, let's look at how they relate to return on investment and popular product investments. There are many ways to lose or leak time on a factory floor: waiting for materials, machine stoppage, extended breaks, paste replenishment, feeder change, and many others.

This example addresses a hidden opportunity: eliminating an accepted necessary evil through reflow oven stabilization time between PCB runs. The investment to combat this is the addition of third-party add-on software used to minimize or eliminate stabilization time.

Let's use the following assumption:

Ten product runs per week, changing over one time per day.

Loss of 20 min. (in addition to screen printer and placement machine setup) equaling 1.6 hr. of lost productivity per week.

Conservative recovery of 80% or 1.3 hr. per week.

Technology investment of \$20,000, five-year depreciation, 20% residual value.

The additional profit is \$26,000, with an ROI of nine months (TABLE 5)

Table 5. Reflow Downtime ROI

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	\$20,000	
Variable: Average cycle time reduction (seconds)	0	
Variable: Yield improvement (percentage)	0.00%	
Benefit: Capacity increase (percentage)	3.27%	
Benefit: Profit increase (percentage)	3.03%	
Return on Investment payback	8.9	(months)
ASSUMPTIONS	PROCESS A	PROCESS B
	A	В
Investment Value (\$ US)	0	20,000
Average line cycle time (seconds)	30	30
Yield first pass (%)	93.0	93.0
Hours per week	40	40
Unused time (set up, changeover, etc.)	1.6	0.3
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	0	80
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	239,616	247,728
Total Good Units Revenue	222,843	230,387
Unit cost (\$)	66	66
Unit Profit (\$)	4.00	3.99
Total Profit (\$)	891,372	918,348
Total increase in profit (\$)		26,977
% Increase in profit		3.03%
ROI (in years)		0.741
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Investment costs associated with shop floor management software have been a challenge for many assembly businesses. But new more affordable solutions for digital work instructions, forced routing, traceability and detailed reporting are available. This example looks at how this product's functionality affects financial contribution (TABLE 6).

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	\$75,000	
Variable: Average cycle time reduction (seconds)	10	
Variable: Yield improvement (percentage)	1.00%	
Benefit: Capacity increase (percentage)	19.05%	
Benefit: Profit increase (percentage)	21.06%	
Return on Investment payback	10.8	(months)
ASSUMPTIONS	PROCESS A	PROCESS B
	Α	в
Investment Value (\$ US)	0	75,000
Average line cycle time (seconds)	60	50
Yield first pass (%)	93.0	94.0
Hours per week	40	40
Unused time (set up, changeover, etc.)	6	5
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	0	100
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	106,080	131,040
Total Good Units Revenue	98,654	123,178
Unit cost (\$)	66	66
Unit Profit (\$)	4.00	3.88
Total Profit (\$)	394,618	477,710
Total increase in profit (\$)		83,093
% Increase in profit		21.06%
ROI (in years)		0.903
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Table 6. Functionality-Financial Contribution Relationship

Let's use the following assumption:

Functionality includes digital work instructions, forced assembly routing, traceability and detailed reporting.

Investment of \$75,000, 25 user licenses, software, hardware for scanners and user interface, installation, full depreciation/five years.

- Modest cycle time gain of 10 sec. per workstation, yield improvement of 2%, reduced setup time one hr. per week.
- The benefit is \$83,000 in annual profit and ROI of less than one year with secondary benefits of increased competitiveness and customer satisfaction.

It is a common belief that 60% or more defects can be traced to the screen printing process. A common action to address this challenge is the addition of solder paste inspection. SPI can provide a number of benefits, including quality improvement, cycle time and rework reduction, reduced troubleshooting and process optimization (TABLE 7).

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	\$105,000	
Variable: Average cycle time reduction (seconds)	2.25	
Variable: Yield improvement (percentage)	3.00%	
Benefit: Capacity increase (percentage)	8.93%	
Benefit: Profit increase (percentage)	10.79%	
Return on Investment payback	17.8	(months)
ASSUMPTIONS	PROCESS A	PROCESS B
	A	В
Investment Value (\$ US)	0	105,000
Average line cycle time (seconds)	36	33.75
Yield first pass (%)	93.0	96.0
Hours per week	40	40
Unused time (set up, changeover, etc.)	6.0	5.0
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	0	80
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	176,800	194,133
Total Good Units Revenue	164,424	186,368
Unit cost (\$)	66	66
Unit Profit (\$)	4.00	3.91
Total Profit (\$)	657,696	728,672
Total increase in profit (\$)		70,976
% Increase in profit		10.79%
ROI (in years)		1.479
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Table 7. SPI Benefits

Let's assume the following:

Yield increases 3% (customers report 3 to 6% initial increase).

Time saved troubleshooting / tweaking print process 1 hr. per week.

Use of features like auto offset correction and real-time process monitoring.

Optimized wipe:

Existing

Printer cycle time 30 sec. without wipe (PCB in to PCB out).

Wiper cycle time 30 sec.

Total print and wipe cycle time prior to optimization, 1 wipe each 5 PCBs – average cycle time 36 sec.

Optimized

Total print and wipe cycle time after optimization, 1 wipe each 8 PCBs – average cycle time 33.75 sec.

SPI machine investment \$105,000, including closed-loop retrofit on printer (\$5,000 estimate).

Five-year depreciation with 20% residual value.

The additional profit is \$70,000, ROI 18 months, positive cash flow when leasing.

Comparing Brands and Models

Here is a common scenario. You are interested in two products, but there are differences in operational specs and price. One product sells for \$100,000, the other \$130,000. From the buyer perspective, the lower-priced unit is appealing, but which is the best choice based on profit contribution? Or from the seller's perspective, how do you present your product from an investment position?

Let's assume there are performance differences for the lower priced unit. These include three sec. slower cycle time, one hr. additional setup time per week, and lower yield by 0.25%.

Singling out the benefit from one variable – cycle time – the higher-priced product delivers \$45,000 additional profit annually, which more than covers the difference in purchase price in the first year of use (TABLE 8). Combining all three benefits increases the profit to \$65,000 (TABLE 9).

Table 8. Single Variable Benefits

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	\$130,000	
Variable: Average cycle time reduction (seconds)	3	
Variable: Yield improvement (percentage)	0.00%	
Benefit: Capacity increase (percentage)	7.50%	
Benefit: Profit increase (percentage)	7.52%	
Return on Investment payback	8.0	(months)
ASSUMPTIONS	PRODUCT A	PRODUCT B
	A	В
Investment Value (\$ US)	100,000	130,000
Average line cycle time (seconds)	40	37
Yield first pass (%)	96.0	96.0
Hours per week	40	40
Unused time (set up, changeover, etc.)	6	6
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	80	80
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	159,120	172,022
Total Good Units Revenue	152,755	165,141
Unit cost (\$)	66	66
Unit Profit (\$)	3.90	3.87
Total Profit (\$)	595,021	639,763
Total increase in profit (\$)		44,742
% Increase in profit		7.52%
ROI (in years)		0.671
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Table 9. Multiple Variable Benefits

FINANCIAL IMPACT SUMMARY		
Number of shifts	1	
Investment Value (\$ US)	\$130,000	
Variable: Average cycle time reduction (seconds)	3	
Variable: Yield improvement (percentage)	0.25%	
Benefit: Capacity increase (percentage)	10.14%	
Benefit: Profit increase (percentage)	11.08%	
Return on Investment payback	5.5	(months)
ASSUMPTIONS	PRODUCT A	PRODUCT B
	Α	В
Investment Value (\$ US)	100,000	130,000
Average line cycle time (seconds)	40	37
Yield first pass (%)	96.0	96.25
Hours per week	40	40
Unused time (set up, changeover, etc.)	6	5.0
Unit rework cost (\$)	15	15
Selling price of customer product	70	70
Depreciation (%)	80	80
Years of depreciation	5	5
Maintenance / year	0	0
FINANCIAL IMPACT		
Number of Units/ year	159,120	177,081
Total Good Units Revenue	152,755	170,441
Unit cost (\$)	66	66
Unit Profit (\$)	3.90	3.88
Total Profit (\$)	595,021	660,962
Total increase in profit (\$)		65,941
% Increase in profit		11.08%
ROI (in years)		0.455
PCB COST BASIS		\$ PER BOARD
Components		24
Labor		21
PCB		4
Consumables		1
Floor space, utilities		16
Total cost		66

Conclusion:

From the end-user perspective, understanding the financial impact of process change can be helpful when planning, budgeting, comparing equipment, determining investment priorities, and supporting continual process improvement efforts. The examples demonstrate how even small incremental improvement lowers cost and increases profit, manufacturing capacity, and competitiveness.

From the supplier standpoint, the analysis can be helpful in differentiating your brand, defining your value proposition, and assisting your customer with their return on investment calculations. Imagine the impact when you present your product in terms of its effect on profit, manufacturing capacity and ROI, instead of simply faster and better.

Jeff Mogensen is founder of Utopia Sales Partners (utopiasalespartners.com); jeff@utopiasalespartners.com